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"Escape" of a Periodically Driven Particle from a 
Metastable State in a Noisy System 

Moshe Gitterman 1'2 and George H. Weiss 1 

We consider the statistical properties of the escape time of a particle initially 
sitting in a potential well subject to a combination of white noise and a periodic 
forcing term. As one finds in the case of the much-studied bistable potential, 
different kinds of resonant effects can occur, as measured by the survival 
probability and the average residence time. When this time is considered as a 
function of the noise strength, then we show that for small amplitudes of the 
forcing term there are no resonant effects, while for large amplitudes such effects 
can appear. We also show that a resonant phenomenon is possible in terms of 
the amplitude of a periodic forcing term. 
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1. I N T R O D U C T O R Y  R E M A R K S  

Stochastic resonance, i.e., a variety of resonant effects attributable to the 
interaction between a periodic applied force and noise in nonlinear 
dynamical systems, has been identified in a number of physically realizable 
systems. (1-4) One can distinguish between two types of resonance in 
classical mechanics, the first referring to the type occurring in linear 
systems and the second to that in nonlinear systems. If a linear system is 
subjected to a sinusoidal forcing term of the form A cos oJt, where A is an 
amplitude, resonance occurs when co is equal to a natural frequency of the 
physical system, independent of the value of the amplitude. On the other 
hand, when the dynamical system is nonlinear the resonance phenomenon 
can indeed be a function of the amplitude as well as the frequency. 
Analogous phenomena exist when the system is also influenced by noise. 
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Among other results in the present paper we will show that both the 
frequency and the amplitude can play significant roles. 

By now there is a large literature devoted to elucidating properties to 
be expected in systems with interacting effects of noise and a periodic 
forcing term. A majority of the papers on this subject emphasize resonant 
properties associated with the signal-to-noise ratio and the correlation 
function, but more recently some attention has been paid to the study of 
resonance phenomena in the kinetic properties of primarily nonlinear 
dynamical systems. As an example we mention the existence of a series of 
peaks in the probability density of the escape time in a bistable system. (5) 
Different kinds of resonance phenomena produced by a periodic driving 
field have been shown to exist in diffusive systems in the presence of both 
trapping (6) and reflecting (7) boundaries. 

In this article we consider still another manifestation of the interaction 
between periodic and random forces for a nonlinear system. Specifically, 
this system consists of a single potential well, and the resonant properties 
appear in the behavior of a function that we define as an average escape 
time. Let us consider a particle moving in one dimension subject to a 
potential field which is chosen to have the form 

X 2 X 3 A 
U(x, t)= cos(cot) (1) 

which is presumed to act on particle in addition to zero-mean white noise 
n(t), whose first two moments satisfy ( n ( t ) ) = 0  and (n ( t )n ( t ' ) )=  
2Dg)(t- t'). In the preceding equations A and D are constants. By conven- 
tion A is chosen to be positive. The potential in Eq. (1) has no more than 
a single minimum, and a permanent escape from the potential well is 
possible both with and without additive noise. Such a system differs from 
the bistable potential, which is often characterized by a steady state. In 
consequence the set of parameters likely to be of interest can differ from 
those used in the study of the bistable system. 

If we neglect inertial effects (that is, the system is overdamped), the 
equation of motion of a particle moving under the joint influence of noise 
and the periodic driving force in Eq. (1) is 

--~-x-xdX _ z +~A cos(cot) + ~ n(t) (2) 

The Fokker-Planck equation satisfied by the probability density, 
p(x, t l Xo), for the position of a particle at time t that was initially at Xo is 

~t c~x ~ c3x x--  x2 +-4 c~ p (3) 
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When the potential includes neither noise nor a periodic forcing term, 
that is, A = D = 0 in Eqs. (2) and (3), it will have a maximum at x = 0 and 
a minimum at x = 1, thereby defining a potential well of the form shown 
in Fig. 1. 

This well persists at all values of the time provided that A ~ 1, 
although the positions of the minimum and maximum will shift from the 
points x = 0 and 1. When A ~< 1 it is easily shown that the trajectory of 
a particle initially within the well will always remain bounded. When 
these conditions are not satisfied the particle can escape over the barrier 
and for certain combinations of parameters will satisfy the condition 
l i m , ~  x( t ) - -  - oe .  The satisfaction of this limiting behavior will define 
what we mean by the term escape. It is quite difficult to calculate the 
parameter combinations that ensure escape for motion described by Eq. (2) 
since it involves a knowledge of quantitative properties of the Mathieu 
equation. 

The addition of noise to the picture enables a particle to escape from 
the well no matter what the value o,f the parameter A in Eqs. (2) and (3). 
We have not been able to determine whether escape occurs with a 
probability equal to one, but conjecture that this is indeed the case. 

If D-r 0 but A = 0, which is to say that the system is subject to noise 
but not to a periodic forcing term, the rate of escape of a particle from 
a potential well predicted by the Kramers theory in the case of the high- 
friction limit is (8) 

ko=~-~-2[IU"(x=O)fU"(x=l)]'/2exp~ . . . .  exp - ~-~ (4) 

Fig. 1. A schematic diagram of the part of the potential that is independent of time. 
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where A U (= 1/6) is the barrier height in Fig. 1. The Kramers derivation of 
Eq. (4) presumes that the system is overdamped, which implies that the 
magnitude of the noise is required to satisfy 

D ~ 1/6 (5) 

which will be assumed in much of the analysis to follow. Because we have 
not been able to settle the question of the conditions under which complete 
escape occurs, we will only be able to discuss a weaker version of this 
general phenomenon. This version defines escape as being equivalent to the 
particle reaching the peak of the barrier, which, of course, is not equivalent 
to the statement that x(oe)= -oe. However, it is obviously a necessary 
condition for this to occur. Within this simplified version of the escape 
problem it will prove possible to discuss parameters exemplified by the 
survival probability and mean escape time as a function of the amplitudes 
of the forcing term, the noise, and the driving frequency. By survival 
probability we will mean the probability that the particle remains within 
the well and has never reached the maximum. The Kramers analysis 
implies that at sufficiently long times the survival probability S(t) can be 
approximated by a negative exponential which we write 

S(t) ~ e-k~ (6) 

Notice that we have not written a full equality sign here because at early 
times the particle will remain in the potential well and the detailed 
structure of the potential barrier is then important. The exponential form 
in (6) arises because the particle spends a considerable amount of time in 
the neighborhood of the maximum. Several authors replace the factor ko by 
ko/2 to take into account that the particle, when at the top of the barrier, 
may move in both directions, either escaping to -oo  or returning to the 
well. This distinction is unimportant in the context of our investigation. 

We will be interested in the qualitative changes induced in both the 
rate and the survival probability when the system is subject to the com- 
bination of a periodic modulating field and white noise. Without any 
detailed calculations we can expect to see at least some ripples in S(t) due 
to the periodic force [but remember that S(t) must be a nonincreasing 
function]. Indeed, the deterministic forcing term in Eqs. (2) and (3) peri- 
odically induces the particle to approach the barrier peak when cos(~ot) is 
negative. It remains to be seen whether this change in the behavior of S(t) 
leads to nonmonotonic behavior of the mean survival time ( t )  considered 
as a function of D. Our results indicate that this does not occur for small 
A, but does occur when A is large. The precise definition of what we under- 
stand by large and small A will be given shortly. As a parenthetic remark, 
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our calculations indicate that ( t )  considered as a function of A can be 
nonmonotonic even for small A. A complete solution to this general ques- 
tion involves some rather tricky mathematical problems, but one can make 
partial progress in the study of various limiting cases which shed some light 
on the behavior expected in this class of systems. In the following section 
we briefly review some results presented in ref. 9 on the effects of a periodic 
field on the dynamics of escape from the potential well defined by Eq. (1) 
with D = 0. This case is sufficiently simple so that one can obtain precise 
results. 

2. T H E  N O I S E - F R E E  C A S E  

When there is neither a periodic forcing term nor noise the solution to 
Eq. (2) is 

x(0) 
x(t) = (7) 

x(0) + [1 - x (0) ]  e - '  

from which it follows that escape occurs if and only if x(0) is negative and 
it occurs instantaneously at the time 

Let us next add a sinusoidal forcing term (A =A0) in Eq. (2) while 
keeping D = 0 and consider first the case in which escape does not occur, 
i.e., when the trajectory has both a bounded minimum and a bounded 
maximum. In order to have such a trajectory we require that 2 = 0 at two 
real values of x(t) which can be calculated by setting the right-hand side of 
Eq. (2) equal to zero and requiring that the roots of the resulting equation 
be real. This consideration implies that the trajectory is bounded, or 
equivalently that the particle does not escape from the well provided that 
x(0) satisfies the inequality 

x(0)>~ � 8 9  ( I + A )  l/2] (9) 

When D = 0 and A 4 = 0 we can, in fact, discuss escape in the rigorous sense 
Ix(o o ) =  - o o  ], but must define what we mean by the escape time, since 
there cannot be a specific value at which the particle escapes as there is in 
Eq. (8). 

One can find a sufficient condition for escape from the well by dividing 
the time into successive cycles defined by the period of the sinusoidal 
forcing term. In the nth cycle the particle trajectory has both a maximum 

822/70/1 2-8 



112 Git terman and Weiss 

and a minimum value, the minimum occurring when cos(cot)= - 1 ,  i.e., at 
times t = (2n - l)rc/co, where n = 1, 2,.... In an arbitrary cycle call the value 
of x ( t )  at such a minimum x m. Escape occurs provided that both Xm and 
the velocity at Xm are negative. This is equivalent to the requirement that 

- 2xm > (1 + A )  1/2 - 1 (10) 

Figure 2 shows curves of x ( t )  for a number of frequencies of the sinusoidal 
term, illustrating the fact that escape, as we have defined it, can occur at 
the end of any cycle, and the escape cycle is very sensitive to the frequency. 

The condition in (10) also indicates that escape is not an automatic 
consequence of the condition A > 1. On defining T =  2re/co as the cycle 
time, one can show that the particle cannot escape when x ( T ) >  x(0). To 
see this, set e( t ) = x(  t + T)  - x (  t ). This function satisfies 

= ( 1 - - 2 x ) ~ - ~ 2  (11) 

The argument is based on the assertion that the condition e(0)> 0 implies 
that e ( n T ) > 0  for all integer n. To see this, assume that x ( t ) r  1/2 (this 
proves to be no real restriction) and suppose that e(t) is small enough so 
that the quadratic term in Eq. (11) can be neglected. The solution to the 
resulting linear equation is 

[Io 
t 

e ( t )=~(0 )exp  t -  x ( r ) &  (12) 

1.5 

vii i:i  i:i 
- , B h i 

0.5 1 1,5 

t 
Fig. 2. Trajectories of a particle whose dynamics is described by Eq. (2) plotted as a function 
of time. The parameters used are D = 0  and A = 1.2 and the frequencies are (a) o3 =0.13196, 
(b) m=0.13197, (c) o3=0.13198, (d) ~o=0.13199. 
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which implies that e(T) must have the same sign as e(0). By induction one 
finds that when ~(0) is positive e(nT) is likewise positive, which implies that 
the particle cannot escape from the well without being subject to the 
additive noise term indicated in Eq. (2). 

When x(T)< x(0) we cannot be sure that the particle will ultimately 
escape from the well, hence e ( T ) > 0  is a sufficient, but not a necessary 
condition for the particle to remain trapped. These considerations do not 
tell us what to expect when e(0) is negative except when the particle is at 
the top of the barrier, when one can show that escape is certain provided 
that x(T) is out of the well. Some qualitative aspects of the escape time for 
different values of A and T are shown in Fig. 3 for this particular case. 
When A and T are points lying above the upper curve escape occurs even 
before the end of the first cycle. The area between the upper curve and the 
next closest one contains (A, T) pairs for systems in which the particle 
escapes at the end of the second cycle, and so on. The points lying below 
the lowest of the curves correspond to systems in which there is no escape. 

In the following sections we turn to the main part  of our analysis 
concerning the relation between the noise and the periodic term, which will 
be seen to be different, depending on the magnitudes of both A and T. 

100'. 

1C 

I -  1 

0.1 

0 '01.1 . . . . . . . .  i . . . . . . . .  1'0 . . . . . . .  iO0 
A 

Fig. 3. Separatrices in the (A, T) plane that indicate the cycle number at which escape 
occurs. The region above the upper curve corresponds to escape before the first cycle, the 
region between the upper and adjacent curves to escape between the first and second cycles, 
and so forth. The region below the lowest curve corresponds to trapped particles. 
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3. T H E  A D I A B A T I C  A P P R O X I M A T I O N ;  uJ ~ 1 

The adiabatic approximation is defined by the condition that a 
particle inside the well comes to equilibrium quickly in comparison with a 
period of the external field. All of the following analysis will be based on 
the assumption that a potential well exists at all values of the time, which 
will be true provided that A < 1. One can think of the analysis in this 
section as applying to a two-state system in which one state corresponds to 
occupancy of the well and the second to escape. 

The kinetics of relaxation to equilibrium within the well occurs on a 
time scale tr defined in terms of the potential as 

)1 
= (]•2U1 =1  (13) 

tr ~laX21x=l,A=O 

Thus, the adiabatic regime is defined by the requirement that 
~o < 27r/tr= 2~. In the adiabatic regime the Fokker-Planck equation (3) is 
characterized by two different time scales, a fast one during which the 
system relaxes to an "equilibrium," and a slow one determined by the 
sinusoidal term on the right-hand side of Eq. (3). When the adiabatic 
approximation is valid one can, at sufficiently short times, use the Kramers 
approximation to the rate given in Eq. (4) with an effective A U containing 
a time-dependent contribution. This function will be denoted by A Uao, 
which can be written in terms of the stable and unstable points x,(t) and 
x,(t), respectively, as 

z~ Gad = Uad(X = Xu(t))- Uad(X = Xs(t)) (14) 

The positions of the stable and unstable points are readily determined to 
be 

1 - [1 + A  cos(cot)] 1/2 1 + [-1 + A  cos(cot)] l/2 
x u ( t )  - , X s ( t )  - ( 1 5 )  

2 2 

After substituting these values into Eq. (4) and performing a small amount 
of algebra we find as the adiabatic approximation to the escape rate 

kad(e) t )_x/2[l+Acos(oot)]exp{ 1 } - - - ~ -  - ~-~ 1-1 + A  cos(cot)] 3/2 (16) 

The probability that the particle is in the well at time t, S(t), can be written 
approximately as the exponential 

F 1 Jof~~ d~] (17) S(t) ~ exp - - k~d(~) 
[_ 
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Provided that one makes the assumption that escape from the poten- 
tial well is permanent, which is to say that the scale of the escape time is 
measured by the time to reach the top of the barrier, the function S(t) can 
be regarded as a survival probability. This, in turn, allows one to define 
both a probability density for the survival time, s ( t ) = - d S / d t ,  and an 
associated survival time ( t )  defined in terms of S(t) as 

S ( t )=  s(,)& (is) 

We will be interested in the properties of .(t) as a function of the 
parameters A, D, and co. 

The numerical calculation of ( t )  can be simplified by reducing it to 
an integral over a finite interval by taking advantage of the periodicity of 
kaa(cot), i.e., k~d(cot + 2rcn)= kad(COt ) for integer n. This allows us to write 

S ( t + ~ ) = S ( t ) e x p ( -  ~ n ( k ) )  (19) 

where ( k )  is the average of kad(~e)) over a single cycle 

1 f2" kad(~) d~ (20) 
( k )  = 2--~ o 

The relation in Eq. (19) immediately allows us to express S(t) in the form 

S(t) = e -  <k>t a(t) (21) 

where ~r(t) is a nonnegative periodic function of t, the period being 2~/~o. 
An exact representation of this function can be found by evaluating the 
exponent in Eq. (17). A typical curve of the modulating function a(t) as 
a function of t is shown in Fig. 4. A similar argument justifies writing the 
probability density for the escape time s(t)= -dS/dt in the same form as 
Eq. (21), that is, as e x p ( - ( k ) t ) q ( t )  with a second periodic function tl(t ) 
replacing the function a(t) that occurs in Eq. (21). This new function is not 
independent of a(t), but can be written in terms of it as 

tl(t ) = (k  ) a( t ) -#( t )  (22) 

which is also periodic. There is an implicit constraint on the function a(t), 
since s(t) must be nonnegative. We conclude from this consideration that 
within the framework of the adiabatic approximation the probability 
density s(t) can be expected to vary nonmonotonically as a function of t, 
replacing the monotonic dependence on time that is found in the absence 
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Fig. 4. An illustration of the modulat ing function a(t) plotted as a function of t. 

of an imposed periodic driving force. Another candidate for resonant 
behavior is the mean survival time ( t ) ,  which can be expressed as 

( t ) =  1 - e x p  2--~-~ ( k ) c o  Jo exp ---co kaa(~)d~ dt (23) 

While it is possible to evaluate the function k,a(~) in terms of an 
infinite series, the results of such a calculation can only be expressed in a 
very cumbersome and noninformative form. We therefore summarize 
results that have been obtained numerically, after which we discuss some 
limiting cases which can be dealt with analytically. Three parameters 
occur in all of the preceding formulas which may be set arbitrarily: the 
amplitude of the periodic forcing term A/4, the constant D, which measures 
the strength of the noise, and the frequency co. Our numerical results 
indicate that all of the parameters that have been calculated are monotonic 
functions of D when A is small. However, these parameters can depend 
nonmonotonically on A. In addition the calculations indicate a very weak 
dependence on the frequency, hence we will keep co fixed. 

The monotonic dependence of ( k )  on D follows trivially from the 
combination of Eqs. (16) and (20), since D appears only in the exponent 
of our expression for kaa(~), and this function itself is a monotonic function 
of D. However, the parameter A appears both in the exponential and the 
prefactor in Eq. (16), suggesting the possibility that ( k )  might be a non- 
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monotonic function of the amplitude. Figure 5 shows curves of ( k )  as a 
function of A. In a sufficiently noisy situation there is no resonance 
behavior by this function since escape is dominated by the noise. Only at 
sufficiently small values of D does the resonant effect become evident. If A 
is very small, it cannot help to push the particle out of the potential well, 
and all one can hope to observe is the average rate due to noise alone. This 
must be small since we have assumed that the amplitude of the noise is 
small. On the other hand, when A is very large the initial swing, now 
primarily a result of the periodic forcing term, pushes the particle far along 
the positive branch of the potential. This has the effect of decreasing the 
average escape rate, since the particle must traverse the entire potential 
well before reaching the barrier maximum. A straightforward calculation of 
( k )  using Laplace's method for the asymptotic evaluation of integrals 
shows that the value of A that maximizes the average escape rate is 

A ~ 1 - (6D) 2/s (24) 

and when this value is substituted into the definition of ( k )  in Eq. (20) the 
average escape rate is found to be proportional to e x p [ - ( 6 D ) - t / 3 ] .  The 
type of resonant effect just described for the parameter ( k )  also appears 
in ( t ) ,  which exhibits a minimum when considered as a function of A, but 
is a monotonic function of the noise amplitude D. 
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A curve of the averaged rate constant  ( k )  plotted as a function of the amplitude A 
of the field. 
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4. T H E  L I M I T  C A S E S  AID >> 1 A N D  AID ~. 1 

In the last section we introduced the adiabatic approximation to deal 
with a case in which both the noise amplitude D and the amplitude of the 
forcing term A are small in comparison to the barrier height. However, the 
ratio A/D can take on values either very small or very large in comparison 
with 1. In this section we consider both of these cases. 

When A/D ~ 1 we may expand k~a(~) as 

A cos 3) kad( ~) ~ ~-'~ e-1/(6D) (1-  ~--~ cos ~) = ko (1---~ (25) 

so that ( k )  is equal to ko, which is the Kramers form of the rate constant 
given by Eq. (4), and the survival probability S(t) is found to be approx- 
imated by 

S ( t ) ~ e x p [ - k o t  ~k~ q + sin(cot)J (26) 

which indicates a small periodic modulation of an exponential decay. To 
the same degree of approximation the average ( t )  can be expressed as 

1 (  A kg . ' ] 
(t)~oo 1+6Dk2+co2 j (27) 

which indicates that the effect of the modulation is to increase the mean 
escape time. It is also evident from this expression that other than the 
periodic modulation already noted, there is no resonant effect in this order 
o f  approximation, either with respect to the noise amplitude D or as a 
function of the frequency of the driving field. 

Let us next consider the case in which A < 1 but AID >> 1. These condi- 
tions allow us to retain the adiabatic approximation with the result that the 
representation of S(t) in Eq. (17) remains a useful one. In this case it is no 
longer possible to expand the sinusoidal term in the exponent to evaluate 
the integral as has been done in the last paragraph. Instead we shall resort 
to a second strategy for evaluating the integral. The survival probability in 
the adiabatic approximation together with the assumption that A/D >> 1 
yields 

~-~a ox/2[ ~ d{] (28) S(t) ~ exp F _ -  e x p ( - 2  cos 3) 
t 

where 2 = A/(4D). While the integral appearing in this expression can be 
evaluated in closed form, the resulting expression takes the form of an 
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awkward infinite series whose properties are not readily determined. 
However, we can take advantage of the fact that 2 >  1 to calculate a 
relatively simple approximation to S(t). It is clear that the value of the 
integral appearing in the exponent will be dominated by contributions 
from regions in which cos ~ ~ -1 .  These occur at ~n = (2n +1)~,  where 
n = 0, 1, 2 ..... At these points S(t) decreases as a negative exponential of the 
function e x p ( 2 ) / ~ .  Hence we conclude that S(t)  is essentially equal to 0 
when t > 7c/co. 

Within the interval (0, ~/co) we may derive an approximation to S(t) 
by noting that the integral will be dominated by the behavior of the 
integrand in the neighborhood of the point at which cos ~ is a minimum, 
i.e., for ~ ~ cot. If we expand the integrand around this point retaining only 
the lowest-order term, we find that the interpolating form of S(t) is 

�9 S ( t )~exp  ( -  ~ " ~  { 1 - e x p [ - 2 c o t  sin(cot)I}) (29) 

which will be an accurate approximation except in the immediate 
neighborhood of the point at which the sharp decrease occurs, i.e., at 
cot = ~. Hence no oscillatory features can be expected when 2,> 1. 

5. T H E  H I G H - F R E Q U E N C Y  L I M I T  

The adiabatic approximation is valid provided that co is small. In the 
opposite regime (co > 1) we do not expect to see any oscillatory behavior 
because the highly oscillatory driving force tends to average itself out over 
the time scale of the secular motion, which is equivalent to the statement 
that the effect of the oscillatory term should be small in comparison to 
the dynamical behavior found for the oscillation-free system. A precise 
specification of the large-co regime is as that in which co > 2 f e l t  r = 2~, where, 
as before, the value of tr defines the time scale of oscillations in the poten- 
tial well. Notice that in the presence of noise there will be three time scales, 
tr, co-~, and the time scale associated with the noise, which will be 
considered to be negligibly small in comparison to co-~. Let us neglect the 
noise for the moment, a step which will not be crucial to our argument. 
The function x(t)  then satisfies the equation 

A 
= x -  x 2 + 2- cos (co t )  (30)  

Let us next decompose x( t )  into a sum of two terms as follows: 

sin(cot) 
x( t )  = X(t )  + A - -  (31) 

4co 
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The first term on the right-hand side will be assumed to vary significantly 
only over times of the order of tr, while the second term on the right-hand 
side is taken to be small in comparison to X( t )  because of the factor co 
appearing in the denominator. On substituting Eq. (31) into Eq. (30) we 
find that the equation satisfied by X( t )  is 

k = X + A sin(cot)4~ X 2 - A X  sin(cot)20) A2 sinZ(cot)l 6co 2 (32) 

Since X is assumed to vary slowly over times of the order of ~o-1, we 
can replace this function by its average over a single cycle time of the 
sinusoid. Let us an average be denoted by {X} and perform an average 
over both sides of the preceding equation. Because of the separation of time 
scales we have, to a good approximation 

{X 2 } ~ {X} 2 and {Xsin(cot)} ~ {X} {sin(cot)} = 0  (33) 

with the result that {X} is the solution to the approximate equation 

d { x )  A 2 
dt = {X} - {X} 2 - 32o)---- ~ (34) 

This is equivalent to statement that the potential is to be replaced by an 
effective potential Uefr(x) which can be written in terms of U(x) as 

A 2 
u o . ( x )  -- U ( x )  - x (35) 

which is to say, the correction to original potential is quite small and has 
the effect of lowering the energy barrier by a correspondingly small 
amount. Again we have recourse to the Kramers formalism, finding thereby 
that in the large-co regime the approximate rate constant has the form 

1 {1 A2 "~3/27 

In the last three sections we have considered the kinetics resulting from 
different regimes while retaining the assumption that the parameter A is 
less than 1. This allows one to obtain approximate results. In the present 
section we consider the case A > 1 in which no analytic tools can be called 
upon to furnish results in closed form, so that we are perforce required to 
rely on simulations. We will see that there is numerical evidence for the 
existence of stochastic resonance in the system defined by Eqs. (2) and (3) 
in the sense that the escape time depends nonmonotonically on the 
parameter D, which measures the strength of the noise. 
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6. L A R G E - A M P L I T U D E  PERIODIC FIELDS 

In what follows we set the amplitude A equal to 1.2, which 
corresponds to the large-A regime. It should be noted that when A > 1 an 
actual well will not exist at all times, but it will certainly exist at some 
times. We have not been able to furnish a rigorous proof for the certainty 
of escape, although we believe that escape occurs with probability 1. As a 
practical matter in our calculations we defined escape to mean that the 
particle reached x = -10 ,  since, at least to the accuracy obtainable by the 
simulation, no particle returned to the well after having reached this point. 
In all of our simulations the initial position was x0 = 1, that is, the particle 
initially sat at the bottom of the potential well. The mean first passage 
times to escape were found by averaging over the result of 500 replications. 

Some typical results of our simulations are shown in Fig. 6, where they 
are plotted as a function of the noise amplitude D. It is evident from the 
graphs shown there that at selected values of the amplitude of the periodic 
term an increase in D leads to an increase in ( t ) .  When D is sufficiently 
large the average survival time is determined entirely by the noise. Hence 
curves corresponding to different frequencies tend to coalesce as in the set 
of curves in Fig. 6. However, when the noise is small the escape time is 
mainly determined by the externally applied field, and in particular, this 

Fig. 6. 

3 ( c ) ~  

2- ( b ) ~  

0- -6 -5 4 -3 -2 :1 0 Loglo D 
The average survival time ( t )  plotted as a function of the logarithm of the noise 

amplitude for A = 1.2 and the same frequencies as given in Fig. 2. 
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time becomes highly sensitive to the imposed frequency. As one can 
observe from Fig. 6, changes in frequency of the order of 10 -5 can lead to 
significant changes in ( t ) .  This occurs because the frequency shift changes 
the cycle at which the particle leaves the well. 

7. C O N C L U S I O N S  

Resonance in mechanics generally refers to nonmonotonic behavior of 
a system subjected to a periodic driving force. The most familiar example 
of this occurs in linear systems when the frequency of the external driving 
force approaches the natural frequency of the system. Analogous phenomena 
occur in random systems driven by a periodic field. These effects can be 
especially pronounced in nonlinear systems. 

The term "stochastic resonance" is generally used in a restricted sense 
to describe nonmonotonic behavior of the Fourier component of the 
autocorrelation function of the output of the system as a function of the 
strength of the noise. This phenomenon is expressed as an enhancement of 
the signal-to-noise ratio, which is a somewhat unintuitive feature of 
stochastic resonance. There are, however, other manifestations of this 
phenomenon which have been considered in the literature. For  example, we 
cite the nonmonotomic time-dependent behavior of the probability for 
dwell times in bistable systems discussed in ref. 5 and analogous effects for 
the single-well system discussed here. When the amplitude of the periodic 
field is small the general effect is smeared out by the integration over time 
in Eq. (23) and the average escape time is a monotonic function of D. This 
is to be contrasted to the Fourier component of the autocorrelation 
function, which often remains nonmonotonic even after one integrates over 
the frequency. 

Two different variations of stochastic resonance have been described in 
this article, based on an examination of parameters which have not been 
discussed at great length in the literature on this subject. One of these is 
characterized by the nonmonotonic change with D of what we have termed 
the average escape time, when the amplitude of the external field is 
relatively large. Second, we have found a new type of resonance in the 
escape rate and the average surival time as a function of A. This resonance 
can exist even when the amplitude A is less than 1 and it depends only 
peripherally on the fact that the system is also driven by noise. 
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